fbpx

How do you find the exact values of cos 2pi/5?

    ##cos(2pi/5)=(-1+sqrt(5))/4##

    Here the most elegant solution I found in:

    http://math.stackexchange.com/questions/7695/how-to-prove-cos-frac2-pi-5-frac-1-sqrt54

    ##cos(4pi/5)=cos(2pi-4pi/5)=cos(6pi/5)##

    So if ## x=2pi/5##:

    ##cos(2x)=cos(3x)##

    Replacing the cos(2x) and cos(3x) by their general formulae:

    ##color(red)(cos(2x)=2cos^2x-1 and cos(3x)=4cos^3x-3cosx)##,

    we get:

    ##2cos^2x-1=4cos^3x-3cosx##

    Replacing ##cosx## by ##y##:

    ##4y^3-2y^2-3y-1=0##

    ##(y-1)(4y^2+2y-1)=0##

    We know that ##y!=1##, so we have to solve the quadratic part:

    ##y=(-2+-sqrt(2^2-4*4*(-1)))/(2*4)##

    ##y=(-2+-sqrt(20))/8##

    since ##y>0##, ##y=cos(2pi/5)=(-1+sqrt(5))/4##

                                                                                                                                      Order Now